
Photon Multiplayer Minigame
Project

Team Systematic Declaration

**Attention Dr.Dan**
**See end of document for extension contributions**

Team Lead Lead Programmer Lead Tester Artist

Bobby Akiah Eric Jamey

Project Code:
https://github.com/PhoenixFire432/Photon2.git

Original Screencast:
https://youtu.be/nMBeejaD-xs

****New Screencast****:
https://youtu.be/R4u2u2_EiM8

Photon Multiplayer Game Write-Up
Modifications of the Project:

Some of the graphical environment elements
Currently, we have a railgun, an animated velociraptor and a variety of blocks

(wood/ice) used to build towers. We now have two dinosaurs (Velociraptor and Pterodactyl)
that can be choses to launch on the railgun. We also have completed blocks for building and
a dinosaur egg that stacks on top. Along with a title screen and added music/sound effects.
Human Player

Currently, the player has been modified to spawn as a railgun which can shoot
dinosaurs at the opponent’s tower. We now have both players connecting and able to choose
either railgun/tower mode.
Win/Lose Condition

https://github.com/PhoenixFire432/Photon2.git
https://youtu.be/nMBeejaD-xs
https://youtu.be/R4u2u2_EiM8


The player who selects to launch dinosaurs will win if they can knock down the egg
within an x amount of dinosaurs being launched. Otherwise, they lose the game.

The player who selects to build the towers will win if their tower is still standing after
the opponent has launched an x number of dinosaurs. Otherwise, they lose the game.

Member Contributions:

Jamey
❖ Model and Texture Variations of Boxes, Tall and Short (Stone, Wood, Ice)
❖ Model and Texture Egg
❖ Model and Texture Railgun
❖ Model / Texture / Rig / Animate Velociraptor

Bobby
❖ Setup Trello Board & GitHub
❖ Update GDD
❖ Manage meetings and document notes
❖ Found audio samples for potential use

Akiah
old
❖ Photon networking for room logic
❖ Projectile instantiation + physics implementation over network
❖ Rail Gun controls, steering, and Firing logic
❖ Player Role Logic (not complete)
❖ Camera movement logic
❖ Rudimentary UI and victory screen
❖ Game state logic

new
❖ Changes to cannon player

➢ Cannon player can now select ammo type for each shot
➢ Cannon player now has limited shots
➢ Re-did ammo preview system
➢ Re-did firing logic to work with new photon implementation

❖ Created Blocks player
➢ Blocks player can spawn in new blocks up to a cap
➢ Can move and rotate blocks with the space, left shift, and mouse wheel
➢ Prevent cannon player from firing until blocks player gives the go-ahead
➢ Implemented RPCs for the blocks to limit unexpected physics behaviours over

the network



❖ General changes
➢ Refactored player controller logic and game manager for easier maintenance
➢ Implemented modular block and ammo templates, allowing fast additions of

new types of blocks or ammo
➢ Re-structured the scene hierarchy to support long(er) term development
➢ Implemented win and lose conditions
➢ More advanced UI with multiple panels that are enabled or disabled based on

game state
➢ Overhaul of entire networking implementation

■ Properly implemented photon for cannon and blocks players
■ Got RPCs working for their intended purpose (win/lose, sending data,

ensuring only one player can be a blocks player or a cannon player)

Eric
Old
❖ Tower Instantiation + physics and colliders
❖ Significant structural overhaul for tower
❖ Singleton and RPC research
❖ Audio Manager and audio clips playing
❖ Audio over network (not complete)
❖ Programmatically organized Velociraptor animator

Member Reflections:

a. What considerations you must make that are different from single player games
when you design and implement a multiplayer game.

b. How multiplayer gameplay changes the nature of a game from a theoretical
perspective.

c. How a multiplayer environment might be created where learning could occur,
the nature of that learning

d. how you would go about implementing such an environment.

Jamey
A. Multiplayer games are more conscientious where things are located in folder

systems as well as programmatically. As someone who worked more on the
assets, I didn’t get as much of the hands-on information, but from what I



learned of python and input from other groups I observed that assets across
the server are very particular so that they may be consistent across each
person’s device.

B. Multiplayer games are undertaken in a group and become a social activity,
whether it be through in game chats, pvp modes, or collective efforts. This
changes the dynamic of a gameplay and even subsequent behaviors of players.
The environment can become more lighthearted or competitive, versus when
you play solo it is usually the same dynamic of Player vs. Game. In multiplayer
games, this can range significantly.

C. Learning as a group skill is something GIMM aims to foster, because in a group
applications of knowledge even to gameplay scenarios increase opportunities
for learning due to diversity of experience and opinion. There are environments
beyond gameplay that are being created, such as shared creative spaces over
Hololens (Microsoft Mesh). Whatever the situation is, be it lighthearted
gameplay or collaborative sessions, being with other people is bound to
expand the experience and open the opportunities for learning.

D. Implementing would be different depending on the scenario. For something
more lighthearted and fun, I think it would be useful to establish a
team-building structure, one where roles and multiple members are tangibly
important to the learning and progression of a world. Logic and skill based
operations can be implemented in game-like formats, and coming up with
multiplayer puzzles could accomplish this.

Bobby
A. You need to have a server which can communicate across multiple players and

platforms. It also must be able to update the different changes that each player
has on the environment and reflect those changes in real time.

B. Multiplayer games allow you to interact with other players. This is different
from single player where the player usually plays with/against an AI. I know
from the Hummingbird Project that AI agents are capable of learning quickly
and can become pretty godlike in video games. So, playing against other
players (multiplayer) might be a better option for someone who just wants to
play for fun vs. Playing against an AI agent (single player).

C. Multiplayer games have been packed with learning in my experience. They
create an environment where you could work as a team and teach one another
different ways to tackle an objective of the game. I think the nature of learning
comes from practice and experience. Tons of people watch YouTubers play
games so they can learn from them and the way they play. The same can
happen live in multiplayer video games.

D. I would set up an environment that would give the players a common goal.
Then I would provide tools/actions that could be used to reach that goal and
allow others to learn from each other on how they use those tools/actions.



Dead By Daylight comes to mind when I read this question. They set up an
environment where a team of survivors must use their tools/skills to repair 5
generators which will allow them to open the exit gates and leave. Someone
could choose to focus more on repair work, others could focus more on
distracting the killer. Either way there are always new ways of playing to learn
and adapt to.

Akiah
Notes from January 2022: I still stand by all of this. One thing to note is that I did get a chance
ot overhaul the project, and I think I learned a lot in the doing of it.

A. There are huge structural considerations. The big difference is that you need to
divide the game into networked and non-networked sections, while allowing
them to interact. If we were to do this project again there would be major
changes in structure. Even without re-doing the project, I found myself
frequently re-factoring as we learned more about networking and Photon.

B. Games are experiences. A multiplayer game is a shared experience. Although
there are parallels between the experiences of two people who play the same
singleplayer game ( just as there are for two people who read the same book),
they just don’t have the minutia of details that come from interaction with
another. Whether the nature of a multiplayer game is competitive or
collaborative, it is ultimately about interactions with other players. A
singleplayer game, on the other hand, is ultimately about interacting with the
vision of the creator(s).

C. Learning is (generally) mimicking the behaviors of those around you, who you
expect to behave in more adaptive ways (although learning can happen without
experts to observe, it is slower). Multiplayer environments can provide a
‘testing ground’ to observe ‘correct’ behaviors or to experiment/practice with
them. Learning almost always occurs in multiplayer games, as they are a
collaborative effort to improve. Competitive games have wikis and guides,
collaborative games have mentors and communities. Whether this learning is
useful outside the scope of the game, however, varies.

D. The greatest considerations, in my view, are 1: mentorship, 2; fidelity/sensory
feedback, 3: interactivity, and 4: low-stakes. Mentorship can be formal or
informal (although formal is usually better to ensure that it gets done). Proper
mentorship can ensure that learners know what they ought to try to emulate.
High fidelity/sensory feedback allows learners to properly understand the way
that their mentor(s) interact with the environment. This allows for emulation.
High interactivity allows learners to experiment with behaviors without leaving
the platform. This is important in order to ‘tighten the loop’ that refines learned
behaviors. Finally, lowering the stakes encourages play, which in turn is a state
that encourages learning.



Eric
A. You definitely have to take into account that networked code is far different

from local code. You have to keep in mind that some things are local and some
things are networked and consider what goes where, as well as how to
implement it and how you want it implemented over the network.

B. Multiplayer adds an entirely new thing to account for another player. You can’t
just optimize everything with the expectation of their being only one player to
optimize for. You now have an entire other person who will be playing at the
same time as another player and you have to figure out how to give them
similar experiences and not break either one for the other.

C. Learning is done best through trial and error, so implementing a multiplayer
learning experience I would imagine would be set up to reflect that. With either
you and your friends given tools to mess around with or given detailed
instructions doesn’t mean much. The actual learning bit comes from trying,
failing, trying again and learning why things are happening the way that they
are and how.

D. I would implement such an environment by attempting to give the players tools
to mess with and an open space to explore. Older Minecraft is a solid example
of this, you had a crafting table, but you didn’t know any recipes to craft
anything natively. You had to learn from friends in the game with you or learn
from it’s online community. Eventually you get a large amount of knowledge
gained from the efforts of many working together to figure things out. “How
does redstone work?”, “How do I craft a(n) [x] item?”. Being there with a friend
allows you to mess around and learn, or you could watch tutorials posted by
the online community to learn from them.

Version Control Verification:





Trello Updates
Week 1

Week 2

Week 3



Week 4



***Photon Extension Member Contributions:

Jamey
❖ Model / Texture / Rig / Animate Pterodactyl
❖ Implemented new skybox

Bobby
❖ Created artwork for Title Screen
❖ Created audio track for title screen + button audio
❖ Update GDD

Akiah
❖ Changes to cannon player

➢ Cannon player can now select ammo type for each shot
➢ Cannon player now has limited shots
➢ Re-did ammo preview system
➢ Re-did firing logic to work with new photon implementation

❖ Created Blocks player
➢ Blocks player can spawn in new blocks up to a cap
➢ Can move and rotate blocks with the space, left shift, and mouse wheel
➢ Prevent cannon player from firing until blocks player gives the go-ahead
➢ Implemented RPCs for the blocks to limit unexpected physics behaviours over

the network
❖ General changes

➢ Refactored player controller logic and game manager for easier maintenance
➢ Implemented modular block and ammo templates, allowing fast additions of

new types of blocks or ammo
➢ Re-structured the scene hierarchy to support long(er) term development
➢ Implemented win and lose conditions
➢ More advanced UI with multiple panels that are enabled or disabled based on

game state
➢ Overhaul of entire networking implementation

■ Properly implemented photon for cannon and blocks players
■ Got RPCs working for their intended purpose (win/lose, sending data,

ensuring only one player can be a blocks player or a cannon player)

Eric
❖ Reimplemented the audio to work with the new changes

➢ New scripts means relocated lines!
❖ Added new sounds for the second dino

➢ Pterodactyl has their unique sounds
➢ Both dinos sounds get quieter over the duration of them being launched



❖ Added sounds for collision
➢ All of the blocks make sound when colliding with each other (plays two

different sounds if they are two different block types)
➢ Blocks make their respectives sounds when colliding with the floor and dinos
➢ Dinos make their colliding sounds when they hit the floor, each other and

blocks to play their respectives sounds
❖ Got the second dino being shot out correctly with correct meshes
❖ Filmed and edited the video
❖ Got a coroutine set up to add a one second delay to one of our checks
❖ Got all of the sounds to play correctly over the network
❖ Led the testing

➢ We had a lot of interesting issues with testing, like how the check to see if the
builder player won. It would check to see when the velocity was 0. Which it did
successfully, however, the frame the ammo was spawned to be launched
“technically” has a velocity of 0. Meaning the builder would win the second the
last shot was fired, instead of after their shot cannot move. This led us to
implementing a coroutine to implement a one second delay for that check. The
builder player would now win correctly, after the last shot fired had finished its
movement.

➢ Also led the testing to make sure all of the sounds were correctly playing over
the network for both players


